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1 Introduction

Bond markets exhibit puzzling behaviour in several respects. Long interest rates are more

volatile than predicted by standard macroeconomic models paired with the pure expecta-

tions hypothesis of the term structure, as is the spread between long and short interest rates

(Campbell and Shiller, 1991). In the wake of Shiller’s (1979) and Singleton’s (1980) findings of

excess volatility, an extensive literature has developed to address this behaviour. Some have

turned to non-stationarity in short rates or time variation in term and risk premia.1 Others,

including Rudebusch (1995) and Fuhrer (1996), have pointed to time-varying monetary policy

goals as a way to reconcile the data with theory.

In addition to being overly volatile, interest rates at long horizons are sensitive to current

events – a phenomenon referred to as the excess sensitivity puzzle. Interest rates on bonds

as long as 30 years react positively and significantly on average to current monetary policy

innovations, as found by Cook and Hahn (1989), Kuttner (2001) and Ellingsen and Söderström

(2004). Empirical work by Gürkaynak, Sack, and Swanson (2003) also shows that forward

rates up to 15 years ahead respond to today’s news about inflation and output and exhibit

as much volatility at long horizons as at short.

Against the benchmark predictions of a macroeconomic model with time-invariant pa-

rameters and fully informed agents, these behaviours are puzzling. Models incorporating

backward-looking behaviour still have difficulty reproducing the lengthy response of long

rates.2 A number of authors, including Romer and Romer (2000), Ellingsen and Söderström

(2001) and Gürkaynak, Sack, and Swanson (2003), have pointed to the role that asymmetric

central bank information may play in the reaction of long interest rates to monetary policy.

Revision of long-run inflation expectations prompted by the revelation of such information

seems a likely candidate for explaining the behaviour described above. This view is supported

by findings in the empirical finance literature that much of the variation in the term structure

is due to changes in expected inflation (see Ang and Bekaert 2004).

The aim of this paper is to address two related questions. First, how is the volatility
1Tests of excess volatility are sensitive to the time-series properties of short rates. Variance bounds tests are

misleading when short rates are non-stationary (Flavin, 1981, Marsh and Merton 1986, Cushing and Ackert,
1994). In addition, any amount of volatility can be explained with enough term premium variation.

2In the partly backward-looking model of Rudebusch (2002), the impulse response of forward rates to shocks
dies out completely within 10 years, implying only modest responses of 10-year bonds.
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of long interest rates affected by asymmetric information when monetary policy goals are

time-varying? Second, do these factors play a role in explaining the excess sensitivity puzzle?

I present a forward-looking dynamic stochastic general equilibrium (DSGE) model with

sticky prices and a time-varying and highly persistent inflation target. Two information

scenarios are considered, one in which the inflation target is communicated to bond market

participants and one in which it is not. The latter generates a signal-extraction problem in

which bond markets infer the value of the inflation target from noisy signals. Unlike Ellingsen

and Söderström (2001), who consider asymmetric central bank information about preferences

and shocks in isolation from one another, this paper generates a true signal-extraction problem

in which bond market participants decompose information about inflation into its permanent

and transitory elements.

Paired with the expectations hypothesis of the term structure, the model leads to expres-

sions for bond yields which can be used to address volatility and sensitivity. The counterfactual

of a communicated, time-varying inflation target is helpful in distinguishing the implications

of time-variation from learning about an unobserved target.

The adaptive learning mechanism used in this paper posits that agents adjust their es-

timates of unknown state variables with a linear updating algorithm that reacts to their

forecast errors. In other words, they employ the optimal Kalman filter which minimises

the mean squared error of the one-step ahead forecast error of the unobserved target. The

signal-extraction problem prevents convergence to the true value of the target but has the

implication that agents discount old information. Persistent discrepancies between the true

and perceived target and the revision of long-run inflation expectations are key to the main

results in the paper.

This is related to some of the the recent literature on learning in macroeconomics. Of

relevance to the bond volatility results derived here, Honkapohja and Mitra (2003) show that

endogenous variables in an economy exhibit greater volatility when memory is bounded and

learning does not converge to the rational expectations equilibrium. Orphanides and Williams

(2003) also employ finite-memory, constant-gain learning to show that large transitory shocks

result in pronounced swings in inflation expectations despite true parameter stability. This

paper is in a similar spirit but extends the analysis to the case where constant-gain learning
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is warranted by time variation in the unknown state (the inflation target) and draws out the

implications for financial market behaviour.

The key findings are as follows. Learning results in heightened sensitivity to transitory

shocks, imparting additional variance to forecast errors (Proposition 1) and to the volatility

of bond returns for all maturities (Propositions 2 and 3). This is the case even though the

rate of learning (the gain in a Kalman filter) is optimally calibrated to the true signal-to-noise

ratio in the economy. Time variation in the policy target is the main source of volatility in

interest rates but compared with the counterfactual of full information, learning adds to the

ability of the model to explain the observed volatility in bond returns.

The sensitive behaviour of forward rates described above can also be replicated by the

presence of a non-stationary inflation target and learning. The sensitivity of forward rates

to inflation surprises increases substantially when the asymmetric information problem is

introduced. Simulated coefficients of the response of long interest rates to surprise innovations

in the policy rate are comparable to the estimated values of Kuttner (2001) and Ellingsen

and Söderström (2004) at the long end of the yield curve. Moreover, these coefficients are

more than twice those that would be observed if participants had full information about

policy preferences because constant-gain learning raises the covariance between long and short

interest rates (Proposition 4).

The paper is organized as follows. Section 2 introduces the model and solves for its

behaviour with optimal policy. Section 3 introduces the information assumptions and analyt-

ically illustrates their implications for bond volatility and sensitivity in a simplified version

of the model. Section 4 returns to the full version of the model and presents the quantitative

implications and Section 5 concludes.

2 A Stylised Macroeconomy

In this section I present a stylised model of the macroeconomy and solve for its behaviour with

optimal policy in terms of the shocks arriving in the model. The model consists of a forward-

looking DSGE model based on agents’ optimising behaviour, akin to that of Clarida, Gali,

and Gertler (1999) but with the economic environment modified to include a time-varying
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inflation target. Whilst it is more forward-looking than other commonly simulated models

of the macroeconomy (Rudebusch, 2002, for example, is a popular choice), this characteristic

keeps the model analytically tractable and key features transparent.3 Estrella and Fuhrer

(1999) criticise the ability of forward-looking new Keynesian models to match the persistence

of inflation but this criticism is less potent once persistence is added to policy goals.

2.1 Economic Environment

The model is summarised by the following equations, both of which have their roots in the

microeconomic foundations of dynamic general equilibrium theory:

xt = −γ[it − Et (πt+1)] + Et (xt+1) + gt, (1a)

πt − π∗t = βEt

(
πt+1 − π∗t+1

)
+ λxt + ut, (1b)

where πt is inflation, π∗t the time-varying inflation target, xt the output gap (defined as the

log deviation of output around potential) and it the policy controlled nominal short interest

rate. Aggregate demand (1a) is derived from the log-linearised consumption Euler equation

that solves the consumption-saving decision of the representative household. The pricing

equation (1b) is the log-linear approximation of the aggregate firm pricing rule that arises

from individual firms’ optimal pricing decisions given staggered price setting similar to Calvo

(1983). Appendix A sets out the maximisation problems that lead to both (1a) and (1b).

The economic environment in which firms optimise has been augmented to include a time-

varying inflation target as in Smets and Wouters (2003) and Adolfson, Laséen, Lindé, and

Villani (2004). This differs importantly from the economy described by Clarida, Gali and

Gertler (1999), in which the inflation target is assumed to be constant. In brief, firms who are

unable to re-optimise prices in a given period instead index their prices to a combination of

past inflation and the inflation target. When prices are indexed fully to the current inflation

target, the forward-looking nature of the Phillips curve and the tractability of the model are

preserved.4

3Hybrid variants of such models which include both forward- and backward-looking elements can generally
not be solved analytically but must rely on numerical methods (see Söderlind (1999)).

4If non-optimised prices are partially indexed to past inflation this results in a familiar, partially backward-
looking Phillips curve. The assumption that price-setters know the value of the inflation target is strong
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The disturbance terms obey the following laws of motion:

ut = ρut−1 + ût where ût ∼ iid(0, σ2
û) and ρ ∈ [0, 1) (2)

gt = µgt−1 + ĝt where ĝt ∼ iid(0, σ2
ĝ) and µ ∈ [0, 1) (3)

where ût, ĝt are independent (i.e.: E [vtv
′
t] =




σ2
û 0

0 σ2
ĝ


 where v′t = [ût ĝt]).

The highly persistent and possibly non-stationary nature of inflation in many industrial-

ized countries suggests that a model with a constant steady state and mean-reverting nominal

short rates may be the wrong benchmark.5 Here the inflation target is modeled as a random

walk with innovation variance σ2
ε :

π∗t = π∗t−1 + εt where εt ∼ iid(0, σ2
ε). (4)

Several sources provide evidence for non-stationarity of the inflation target. Smets and

Wouters (2003) find that a large share of the movement in inflation in both the U.S. and

Euro-area economies over the last 20 years can be explained by permanent shifts in a non-

stationary process for the inflation target. Kozicki and Tinsley (2003) have similar success

in describing the evolution of long run inflation expectations in the U.S. by modelling the

unknown inflation target as a random walk. Fuhrer (1996) also finds that the implied series

for the inflation target contains a unit root in an exercise to back out counterfactual pol-

icy parameters that reconcile the pure expectations hypothesis with movements in U.S. long

interest rates.

The specification in equation (4) has the advantage that it does not presume knowledge

of the number or type of potential policy regimes, as is the case when the target is modeled

as a Markov switching process. A shortcoming is that the process is unbounded at long

horizons. From this point of view, it may be more attractive to model the inflation target

as a persistent, mean-reverting process. However, a highly persistent auto-regressive process

given the later scenario in which bond market participants must infer the target. However, when price-setters’
inflation expectations are also formed through adaptive learning, as for example in Preston (2002), the evolution
of the macroeconomy becomes substantially more complicated and detracts from the exposition of later results.

5For persistence see Fuhrer and Moore (1995) and for evidence of unit roots see Mishkin (1992) and Wallace
and Warner (1993).
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exhibits such slow mean-reversion that in finite samples its behaviour is indistinguishable from

a unit root process. Rudesbusch and Wu (2003), for example, permit such a specification and

find a persistence parameter of 0.989.6

For sufficiently small values of σ2
ε the target tends to stay within plausible bounds (the

empirical evidence discussed in Section 4 suggests a standard deviation of around ±1 per cent

per decade). It also captures the idea that an apparently stable monetary policy regime may

continue to exhibit small, permanent adjustments in its preferences and inflation target, as

suggested by Cogley, Morozov and Sargent (2003).

Permanent shocks to the inflation target are the only type of policy change in the model,

although to a first approximation changes in the relative preference for output stability in the

loss function could be thought of as adjustments in the level of the target. All other structural

parameters in the economy are assumed constant and known.

The timing of the model is that all shocks (ût, ĝt and εt) are realised at the beginning of

period t; taking these into account, the central bank sets its policy interest rate to affect the

outcomes {πt, xt} in the same period. If it is communicated, the inflation target is announced

at the beginning of the period.

2.2 Optimal Policy with Discretion

Consider the standard optimal policy problem of a central bank aiming to minimise the

following loss function with discretion

L = −1
2
Et

∑

j

Ψj
(
αx2

t+j + (πt+j − π∗t+j)
2
)

(5)

where α is the relative preference weight on output stability. The central bank chooses the

pair {xt, πt} each period to minimise its loss function and sets the appropriate value of the

policy controlled interest rate it to achieve this. Given the purely forward-looking nature

of the economy, monetary policy has only a contemporaneous effect and the intertemporal
6Other authors have suggested augmenting the specification to include adjustment to cost-push shocks as

in Kozicki and Tinsley (2003) or lagged inflation as in Gürkaynak, Sack, and Swanson (2003). For clarity of
exposition, the process considered here is a simple random walk. An alternative way of modelling inflation,
and perhaps the target, is by combining mean-reverting dynamics with infrequent intercept shifts as in Levin
and Piger (2002). This specification is still fundamentally non-stationary.
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policy optimisation problem reduces to a sequence of static optimisations. This leads to a

first order condition representing the standard policy trade-off between the output gap and

inflation gap:

xt = −λ

α
(πt − π∗t ). (6a)

The model can be solved for yt and πt in terms of current shocks (see Appendix B) to yield

πt − π∗t =
α

λ2 + α(1− βρ)
ut (7)

xt = −λ

α
[πt − π∗t ] =

−λ

λ2 + α(1− βρ)
ut. (8)

Clarida, Gali, and Gertler (1999) describe this policy as one of ”leaning against the wind,”with

the central bank choosing how much of the inflation shock to offset in any period according to

its preferences and the parameters of the economy. Larger values of α imply a larger inflation

gap for a given shock ut. Higher serial correlation in inflation shocks also raises the multiplier

in (7).

The optimal monetary policy reaction function takes a familiar form for this class of model,

resembling a Taylor rule in the sense that the policy controlled interest rate responds to the

current inflation and output gaps. Here the nominal instrument is also pegged at the level of

the current inflation target (the constant real interest rate is subsumed in the linearisation):

it = Et

(
π∗t+1

)
+

[
1 +

λ(1− ρ)
αγρ

]
Et

[
πt+1 − π∗t+1

]
+

gt

γ
.

Note that the coefficient on expected inflation exceeds unity for positive values of λ, α, γ and

ρ, a necessary condition for a stabilising rule. Rewriting this in terms of shocks in the model,

it = π∗t +
[
ρ +

λ

αγ
(1− ρ)

]
δut +

gt

γ
(9)

where gt, can be interpreted as either the aggregate demand shock or a policy control error.
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3 Inference, Volatility and Sensitivity

3.1 Information Assumptions

The key relationships of the economy in equations (7), (8) and (9) can be summarised as

πt = π∗t + δut where δ =
α

λ2 + α(1− βρ)

π∗t = π∗t−1 + εt

and it = π∗t +
[
ρ +

λ

αγ
(1− ρ)

]
δut +

gt

γ

where ut, gt and εt have the properties described in Section 2.1. In this environment,

forecasting the nominal short rate is a matter of forecasting the time-varying inflation target

and macroeconomic shocks in the economy.

The information assumptions are as follows. The central bank is assumed to know the

structure of the economy at time t and can observe all current variables and shocks but has no

advantage over bond market analysts in forecasting them. That is, the central bank possesses

potentially superior information about the current state of the economy which may result

in more accurate forecasts.7 Bond market participants are assumed to be unable to observe

shocks but I consider two different scenarios regarding their information about the inflation

target:

i) Full information: the inflation target is communicated by the central bank every period

and thus is fully observable to bond market participants. Shocks, whilst not observable,

can be perfectly inferred from a combination of inflation, the inflation target and the

nominal policy short rate.

ii) Limited Information: the inflation target is not communicated. Thus bond market

participants are unable to accurately decompose observed inflation into its permanent

policy and transitory shock components. In all other respects bond market actors are

homogeneously well informed, knowing the structure and parameterization of the econ-

omy as well as the central bank’s preference for output stability. Furthermore, they
7This is consistent with the evidence provided by Romer and Romer (2000) of the superiority of Federal

Reserve information due to better data processing.
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believe correctly that the inflation target follows a random walk and know the relative

variance of innovations to the target and aggregate supply shocks, σ2
ε

δ2σ2
u
.

The first scenario is clearly information rich, more so than would be expected if a central

bank were conducting policy with a time-varying inflation target. However, it will serve

as a useful counterfactual benchmark. This scenario also nests the case of a central bank

conducting explicit constant-inflation targeting.

The second scenario is a more realistic depiction of policy communication for most central

banks and requires that bond markets learn about shifts in policy preferences over time in

order to form long-run inflation expectations. When the inflation target is time-varying and

non-stationary it becomes optimal to place greater weight on recent observations and discount

older observations.8 The model could be generalised to permit some commonly observed

shocks without detracting from the effects of asymmetric information but the focus here will

be on the case described above.

3.2 Forecasting Inflation and Nominal Short Interest Rates

This section illustrates how bond market participants form inflation expectations and forecast

the nominal short interest rate. Within each scenario, all participants have access to the same

information and respond homogenously. In Section 3.3, a special case of the general problem

is presented which leads to analytical expressions for forecast errors and zero coupon bond

yields.

Full Information: Forecasting is straightforward for the case when bond markets know

the inflation target at time t. Denote the current information set as ΩFI
t , which includes all

information up to and including period t. Given the random walk property of the inflation

target, the optimal forecast j-periods ahead conditional on ΩFI
t ,denoted π∗FI

t+j/t, is

π∗FI
t+j/t = π∗t + Et

(
j∑

i=1

εt+i | ΩFI
t

)

= π∗t for all j > 1. (10)
8Such a strategy could also be motivated by arguing that agents suffer from finite memory, as in Orphanides

and Williams (2003), or suspect structural change. Generally, however, the optimal learning strategy when
there is no structural change is to allow the sample to grow indefinitely with equal weights on all observations.
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The optimal projection of inflation conditional on ΩFI
t , πFI

t+j/t, is found by leading (7) and

employing the serial correlation of ut+j :

πFI
t+j/t = π∗FI

t+j/t + δut+j/t

= π∗t + δρjut for all j > 1. (11)

Similarly leading the policy reaction function in (9) and substituting the optimal projections

π∗FI
t+j/t, πFI

t+j/t, ut+j/t and gt+j/t yields

iFI
t+j/t = π∗t +

[
ρ +

λ

αγ
(1− ρ)

]
δρjut +

1
γ

µjgt for all j > 1. (12)

The effect of transitory inflation and output shocks on the predicted path of short rates dies

out geometrically. If shocks are serially uncorrelated (i.e., ρ = µ = 0) the forward rate for

horizons j > 1 is simply today’s inflation target. A positive, permanent shock to the inflation

target raises the expected nominal short rate at all horizons.

Limited Information: To forecast the nominal short rate in the limited information

scenario, bond markets must estimate the inflation target and unobserved shocks. They do

so recursively, employing a linear algorithm to update their estimate of the unobserved state

variables via their forecast errors. This is a straightforward application of a Kalman filter to

the specific state space of this model (see Hamilton 1994 Chapter 13 for a thorough discussion).

The stylised economy described above can be given a state space representation in which

inflation and the nominal short rate are observable variables whilst the inflation target, price

shocks and demand shocks are unobservable state variables.9

The observation equations are




πt

it


 =




1 δ 0

1
[
ρ + λ

αγ (1− ρ)
]
δ 1

γ







π∗t

ut

gt




(13)

9The output gap (xt) is assumed to be unobservable in this setup because of the difficulty in observing
potential output and agents do not employ it as part of their filtering program to extract π∗t . However, xt

could be decomposed into measured output and unobservable potential output with the appropriate filter,
much as is done today by professional economists.
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and the state equations are




π∗t+1

ut+1

gt+1




=




1 0 0

0 ρ 0

0 0 µ







π∗t

ut

gt




+




εt+1

ût+1

ĝt+1




(14)

where εt+1, ût+1 and ĝt+1 are distributed iid as before.

The optimal Kalman updating algorithm is




π∗t+1/t+1

ut+1/t+1

gt+1/t+1




=




1 0 0

0 ρ 0

0 0 µ







π∗t/t

ut/t

gt/t




+




κπ,π κπ,i

κu,π κu,i

κg,π κg,i







πt − πLI
t/t−1

it − iLI
t/t−1


 (15)

where
[

κf,π κf,i

]
, f = π, u, g are the steady state Kalman gains.10 The notation zt/t is

used to denoted the inferred value of the state variable at t based on information up to and

including t. Individuals update their estimate of the inflation target by attributing a constant

fraction of the forecast error in inflation and nominal short rates to the state variables. The

following section illustrates how the gain is related to fundamental variances in the model.

This system nests three related learning strategies. When the first equation in (13)

is treated as the only observation equation, agents learn about unobserved state variables

through the signal contained in inflation and its forecast errors. When the second equation

is treated in isolation, the estimate of the inflation target and shocks in the economy are

updated through unexpected innovations to the nominal short rate. This corresponds to the

ideas of Romer and Romer (2000) and Ellingsen and Söderström (2001), where actions of the

central bank contain a signal about their superior information. In the simplified environment

described by Ellingsen and Söderström (2001), either policy preferences or a macroeconomic

shock are unobservable but not both at the same time. Thus the signal extraction problem is

trivial as the missing information is revealed immediately and completely upon observation

of the central bank’s policy movement.11

10For the Kalman filter to be the minimum variance estimator of the unknown states, the errors must be
distributed normally. For all other distributions it is the best linear estimator. To possess steady state values,
the eigenvalues of the coefficient matrix in (14) must be in or on the unit circle.

11Technically, the signal-to-noise ratio is either zero or infinity, implying a gain of zero or one respectively.

12



Gürkaynak et al (2003) and Kozicki and Tinsley (2003) also assume learning via the short

rate because in their more backward-looking models it is a more timely signal of policy change.

However, in this model, the policy short rate is a noisier signal of the inflation target due to

the additional variation contributed by gt. The third learning strategy is to employ both

observation equations in tandem. Bond markets almost surely elicit information from both

sources since they react to both inflation news and monetary policy innovations but the timing

of policy announcements rarely coincides with inflation releases as in this model.

Forecasting is straightforward and the optimal projections take a similar form to the full

information case. From the Law of Iterated Expectations we have that

Et




π∗t+j

ut+j

gt+j

| ΩLI
t




=




π∗t+j/t

ut+j/t

gt+j/t




=




1 0 0

0 ρ 0

0 0 µ




j 


π∗t/t

ut/t

gt/t




. (16)

The optimal projection of inflation is thus

πLI
t+j/t = π∗LI

t+j/t + δuLI
t+j/t

= π∗t/t + δρjut/t for all j > 1. (17)

The predicted path of short rates resembles that for full information but state variables are

replaced by their inferred values:

iLI
t+j/t = π∗t/t +

[
ρ +

λ

αγ
(1− ρ)

]
δρjut/t +

1
γ

µjgt/t for all j > 1. (18)

In the following section we will turn to a simple case to illustrate analytically the connection

between learning, excess sensitivity and volatility. In the empirical section we return to the

full version of the model and find that the different learning strategies imply very similar

results.
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3.3 Basic case

In this section the system is simplified in two ways, by taking the case when bond markets

update only through inflation forecast errors and assuming that disturbances are serially

uncorrelated (i.e., ρ = µ = 0). With these assumptions, the state space simplifies to one

observation and one state equation:

Observation equation: πt = π∗t + δût (19)

State equation: π∗t = π∗t−1 + εt (20)

where ût is interpreted as the serially uncorrelated disturbance of the observation equation.

The optimal linear projections of inflation, the inflation target and nominal forward rates

simplify in the full information scenario to

πFI
t+j/t = π∗t+j/t = π∗t for all j > 1 (21)

iFI
t+j/t = π∗t for all j > 1

and when the target is not observed,

πLI
t+j/t = π∗LI

t+j/t = π∗t/t for all j > 1 (22)

iLI
t+j/t = π∗t/t for all j > 1.

Bond market participants aim to decompose the observation equation (19) into transitory

shocks to inflation and permanent shifts in the inflation target. In this univariate state-space,

the optimal Kalman filter algorithm for updating the estimate of the unknown inflation target

takes a simpler form:

π∗t/t = π∗t−1/t−1 + (1− φ)(πt − πLI
t/t−1) (23)

where (1 − φ) is the steady state Kalman gain that regulates the proportion of the inflation

forecast error attributed to the inflation target. The optimally calibrated gain is a non-linear

function of the signal-to-noise ratio, φ = φ
(

σ2
ε

δ2σ2
u

)
, bounded between 0 and 1 (see Appendix C

for functional form). As innovations to the inflation target become noisier relative to aggregate

14



Figure 1: Impulse response functions of forward rates
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the parameters shown in Table 1 with σ2

ε = 0.2.

supply shocks, more forecast error is attributed to change in the inflation target; that is, as
σ2

ε
δ2σ2

u
→∞, (1− φ) → 1 and σ2

ε
δ2σ2

u
→ 0, (1− φ) → 0.

With constant gain learning as in (23), the perceived target overreacts to transitory shocks

(ut) and underreacts to true changes in the target (εt). This is depicted in Figure 1 which

shows the impulse responses of forward rates to transitory and permanent shocks for a more

general case in which ρ = µ > 0. Over time, the perceived inflation target, π∗t/t, roughly tracks

the actual target but with deviations that reflect current and past inference inaccuracies.

The Kalman filter minimises the variance of the one-step-ahead forecast error of the state

variable, here the inflation target. As a result, the unconditional variance of the change in

the perceived target matches the second moment of true target innovations. The recursive

nature of updating also means that the current estimate of the target can be expressed as a

geometric lagged polynomial of the history of observed inflation outcomes:

π∗t/t =
(1− φ)
1− φL

πt. (24)
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3.3.1 Forecast Errors

One-period-ahead inflation forecast errors are central to updating the perceived target and the

nominal short rate forecast error is a linear combination of the same components. Comparing

its variance in the full and limited information scenarios gives us a sense of how learning adds

noise through revision of the perceived target.

Full Information: The one-period-ahead forecast of inflation can be written in terms of

the shocks arriving at t + 1:

πt+1 − πFI
t+1/t =

(
π∗t+1 + δût+1

)− π∗t = εt+1 + δût+1.

Similarly, the difference between the policy rate dictated by the reaction function in (12) and

the forecast of the nominal short rate in (21) yields a forecast error which also reflects shocks

to aggregate demand:

it+1 − iFI
t+1/t = εt+1 +

λ

αγ
δût+1 +

1
γ

ĝt+1. (25)

This forecast error has variance

var(it+1 − it+1/t) = σ2
ε +

(
λ

αγ

)2

δ2σ2
û +

σ2
ĝ

γ2

which is increasing in all innovation variances. More variance in the target is associated

with larger forecast errors. The structural and preference parameters that enter the reaction

function scale σ2
û and σ2

ĝ . A stronger preference for output stability (higher α) reduces the

variance of the forecast error – higher α calls for proportionately less movement in the nominal

short rate via λ
αγ for a given shock and is less than fully offset by the widening of the tolerated

inflation gap
(
δ = α

λ2+α

)
.

Limited Information: The forecast error can be given similar expression in the limited

information scenario, reflecting innovations at t + 1 plus a new term that measures the gap

between the true and inferred values of the inflation target
(
π∗t − π∗t/t

)
:

πt+1 − πLI
t+1/t = εt+1 +

(
π∗t − π∗t/t

)
+ δût+1

16



it+1 − iLI
t+1/t = εt+1 +

(
π∗t − π∗t/t

)
+

λ

αγ
δût+1 +

1
γ

ĝt+1. (26)

The lagged polynomial form of π∗t/t implies that
(
π∗t − π∗t/t

)
is a function of the history of

shocks to the economy and its presence adds noise to forecast errors. The variance can be

derived using recursive substitution (see Appendix D):

var(it+1 − iLI
t+1/t) = σ2

ε(
1

1− φ2
) + δ2σ2

û

[
λ

αγ

2

+
(1− φ)2

1− φ2

]
+

σ2
ĝ

γ2
. (27)

Proposition 1 The variance of the nominal short rate forecast error is unambiguously larger

when bond markets learn about an unobserved inflation target than when the target is perfectly

observed. That is, var(it+1 − iLI
t+1/t) > var(it+1 − iFI

t+1/t). Specifically,

σ2
ε(

1
1− φ2

) + δ2σ2
û

[
λ

αγ

2

+
(1− φ)2

1− φ2

]
+

σ2
ĝ

γ2
> σ2

ε +
λ

αγ

2

δ2σ2
û +

σ2
ĝ

γ2

for positive σ2
ε , σ2

û and σ2
ĝ and constant gain φ ∈ (0, 1). Proof in Appendix D.

Any degree of learning generates additional forecast error variance by enlarging the coeffi-

cients attached to σ2
ε and σ2

û. The source of this additional variance is
(
π∗t − π∗t/t

)
. Intuitively

the gain, (1− φ), determines the extent to which the historical sequence of transitory shocks

ut−j , j = 0, ...,∞ are attributed to π∗t/t. A stronger signal-to-noise ratio (a rise in σ2
ε for a

given value of δ2σ2
û) lowers

(
1

1−φ2

)
but not sufficiently to offset the rise in σ2

ε .

As a constant inflation target is approached (i.e., σ2
ε → 0 and φ

(
σ2

ε
δ2σ2

u

)
→ 1), the forecast

error variances of the two information scenarios coincide. When long-run inflation expecta-

tions are well-anchored by a constant target, forecast errors reflect only the arrival of transitory

shocks.

3.3.2 Bond Yields and the Volatility of Returns

Assuming that the expectations hypothesis of the term structure holds, it is straightforward

to characterise the interest rates on bonds and derive the volatility of returns for the different

information scenarios. Denoting the interest rate on a zero-coupon bond with maturity m at

time t as imt , this interest rate is set as the average expected future short interest rate during
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the time to maturity plus a term premium:

imt =
1
m

m−1∑

j=0

it+j/t + ζm
t

where it+j/t is, as before, the expected short interest rate j periods ahead and ζm
t is the

term premium at time t for maturity m. I do not attempt to model time-variation in the

term premium but assume that it is independent of all relevant variables in the model. In

the calibrations below, time variation in the inflation target rather than the term premium

is used to match historical volatility data, although time variation in the latter would not

change the spirit of the exercise.

To build long rates, bond market participants form expectations about the future path of

short interest rates based on their current information set, ΩFI or ΩLI . With the real interest

rate assumed constant, forecasts of shocks and inflation expectations drive movements in the

term structure.12

Full Information: Denote an m-period bond in the full information scenario as im
FI

t .

Combining the short rate at period t from the central bank reaction function in (9) with the

optimal projection of nominal short rates in (21) yields the following:

im
FI

t =
1
m

(
it + iFI

t+1/t + . . . + iFI
t+m−1/t

)
+ ζm

t

= π∗t +
1
m

(
λ

αγ
δût +

ĝt

γ

)
+ ζm

t . (28)

The nominal yield is pegged at the level of the current inflation target and reflects transitory

shocks, ût and ĝt, only to the extent that they drive the current nominal short rate away

from its equilibrium level. As m increases, averaging ensures that the effect of these shocks

on longer yields diminishes.

Non-stationarity of the nominal short rate implies that variances in levels are unbounded

as t goes to infinity. Instead, the focus here will be on the variance of the period-to-period

change in an m-period bond, a measure of the volatility of returns.13 Differencing (28) yields
12This is broadly consistent with the findings of Ang and Bekaert (2004) who detect very little movement in

the real component of the term structure. They also conclude that the majority of the variance in long term
nominal interest rates is due to changes in expected inflation rather than inflation risk premia.

13Denoting the price of the zero coupon bond Bm
t we have Bm

t = exp(−imt m) where imt is the yield on the
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an expression for the change in an m-period bond between two periods:

im
FI

t − im
FI

t−1 = εt +
1
m

(
λ

αγ
δ (ût − ût−1) +

ĝt − ĝt−1

γ

)
+ ζm

t − ζm
t−1. (29)

To features are worth pointing out. The bond yield at any maturity changes one-for-one with

the inflation target while the effect of transitory shocks diminish with maturity:

∂
(
im

FI

t − im
FI

t−1

)

∂εt
= 1

∂
(
im

FI

t − im
FI

t−1

)

∂ût
=

1
m

λ

αγ
δ.

From here the variance of the change in bond yield will be referred to as the volatility of its

return. From the expression for the change in the bond yield we have the following proposition.

Proposition 2 The volatility of returns to an m-period bond with full information and seri-

ally uncorrelated errors is:

var(im
FI

t − im
FI

t−1 ) = σ2
ε +

1
m2

(
2

(
λ

αγ

)2

δ2σ2
û +

1
γ2

2σ2
ĝ

)
+ σ2

ς .

where σ2
ς is the variance of the term premium. Proof follows immediately from equation (29)

and the independence of shocks to the economy.

First, note that this variance is rising one-for-one with σ2
ε which could be interpreted as

a substitute for σ2
ς . As σ2

ε approaches zero, bond volatility declines until the only source

of variation is the realisation of unforecastable transitory shocks and term premia variation.

This has the natural implication that for given variances of transitory shocks, bond volatility

under inflation targeting should be less than when the inflation target is allowed to vary over

time.

Secondly, volatility is rising in σ2
û and σ2

ĝ , both of which are scaled by their respective

effect on the current short rate. The effect of transitory shocks on bond volatility diminishes

with maturity. A stronger preference for output stability results in less volatile bond rates for

bond as above. The return on the bond is then ln(Bm
t /Bm

t−1) ' −m(imt − imt−1).
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similar reasons that it lowers the forecast error. Higher α is associated with less pronounced

movements of the nominal short rate to counteract inflationary shocks, with the combined

coefficient
(

λ
αγ

)2
δ2 declining in α. While not shown here, more persistent shocks raise bond

volatility. A positive value of ρ raises the tolerated inflation gap for a given aggregate supply

shock with the partially offsetting effect of reducing the unconditional variance of (ut − ut−1).

Limited Information: The expression for the change in an m-period bond in the limited

information case, im
LI

t , can be derived in a similar manner. Combining the policy rate at t

dictated by the central bank’s reaction function with predicted values of the short rate from

(22) yields

im
LI

t =
1
m

(
it + iLI

t+1/t + . . . + iLI
t+m−1/t

)
+ ζm

t

=
1
m

(
π∗t +

λ

αγ
δut +

1
γ

gt + (m− 1)π∗t/t

)
+ ζm

t . (30)

The nominal component is pegged to a combination of the true inflation target, π∗t , and

the inferred value, π̂∗t/t, which is projected for (m − 1) periods of the bond. Taking first

differences, the change in a bond’s yield reflects true changes to the target as well as revisions

to the perceived target,

im
LI

t − im
LI

t−1 =
1
m

(
εt + (m− 1)(π∗t/t − π∗t−1/t−1) +

λ

αγ
δ(ût − ût−1) +

1
γ

(ĝt − ĝt−1)
)

. (31)

The Kalman updating algorithm in (23) expresses (π∗t/t−π∗t−1/t−1) in terms of current shocks,

εt and ût, from which follows

∂
(
im

LI

t − im
LI

t−1

)

∂εt
= 1− m− 1

m
φ

∂
(
im

LI

t − im
LI

t−1

)

∂ût
=

1
m

λ

αγ
δ +

m− 1
m

(1− φ).

Comparing these to the equivalent partial derivatives for full information encapsulates the

story of under- and over-reaction of bond yields to inflation news. The term structure under-

reacts to permanent changes in the target (εt) relative to the full information scenario. As m

grows, the reaction approaches the optimal gain (1− φ). In contrast, all maturities overreact
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to transitory disturbances. The bond yield moves with the transitory shock that entered

the policy reaction function but also attributes (1− φ) of the shock to a revised estimate of

the inflation target. The presence of the maturity reflects the number of periods for which

the mistake is projected (m− 1) and the gain indicates the severity of the learning problem.

The recursive nature of the problem complicates derivation of bond volatility so the reader is

referred to Appendix E and the result presented here.

Proposition 3 The volatility of returns to an m-period bond with limited information and

serially uncorrelated errors is

var(im
LI

t − im
LI

t−1 ) = Aσ2
ε +

1
m2

(
Bδ2σ2

û +
1
γ2

2σ2
ĝ

)
+ σ2

ς

where

A =
1

m2

[
[1 + (m− 1)(1− φ)]2 +

((m− 1)(1− φ)φ)2

1− φ2

]
< 1

B =
[

λ

αγ
+ (m− 1)(1− φ)

]2

+
[

λ

αγ
+ (m− 1)(1− φ)2

]2

+

[(
(m− 1)(1− φ)2φ

)2

1− φ2

]
> 2

(
λ

αγ

)2

For given σ2
ε , σ2

û and σ2
ĝ and φ

(
σ2

ε

δ2σ2
û

)
∈ (0, 1)

var(im
LI

t − im
LI

t−1 ) > var(im
FI

t − im
FI

t−1 ) for m > 1.

Proof in Appendix E.

A and B are functions of maturity, the gain and the economy’s parameters. A is less

than one because bond markets systematically underreact to true changes in the target.

Likewise, systematic overreaction to transitory disturbances results in B being greater than

the corresponding coefficient in Proposition 2 ( 1
m2 2

(
λ

αγ

)2
). B also incorporates volatility in

the bond return due to transitory shocks and is the reason that under- and over-reaction of

the perceived target do not offset in the calculation.

As m rises, the effect of transitory shocks dies out and the movement in longer maturity

bonds is dominated by revision in inflation expectations. Because the Kalman filter optimises

to match this variance to the true variance of the target, the volatility of bonds under the
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two scenarios converge for large enough m.

As the signal-to-noise ratio increases (i.e., σ2
ε

δ2σ2
u
→ ∞), volatility also converges whilst

becoming absolutely larger. A approaches 1 and B is rising in σ2
ε

δ2σ2
u

but less rapidly than

Aσ2
ε .

14 Moving in the other direction, this implies that the ratio of bond volatility in the

limited and full information scenario is greatest when the signal-to-noise ratio is weak (see

Figure 5 below). The relative reduction in bond volatility achieved by communicating the

target is greatest when that target is already close to being stable, an important message for

central banks operating with an implicit inflation target. Finally, when σ2
ε = 0, there is no

learning behaviour and the full and limited information variances coincide. In this situation,

bond volatility is powerfully declining in maturity.

3.3.3 Two Sensitivity Puzzles

1. Sensitivity of bond yields to monetary policy

The model can shed light on a question that has been addressed empirically by previous

authors. By how much should an m-period bond respond to movement in the policy con-

trolled short rate? Cook and Hahn (1989) answer this question by regressing changes in the

policy instrument on bond yield changes, which yields sizeable coefficients for the 1970s but

not in later samples. Arguing that this reflected a larger anticipated element of target rate

movements in recent years, Kuttner (2001) estimates the response of interest rates to surprise

monetary policy actions

∆imt = a + b1,m(it − it/t−1) + et (32)

where market expectations are derived using Fed futures contracts. This yields significant

and surprisingly large estimates of b1 (reproduced in Table 5 below). Even at a horizon as

long as 30 years, a one percent rise in the Federal Funds rate is associated with a 17 basis

point rise in bond yields. Ellingsen and Söderström (2004) estimate similar coefficients when

measuring the unanticipated component of monetary policy as the change in the 3 month rate

on days when the Fed funds rate was moved.

14As
σ2

ε
δ2σ2

u
→∞, A → 1 but B → 2( λ

αγ
)2 +4 λ

αγ
(m− 1)+2(m− 1)2 > 2( λ

αγ
)2. The two coefficients approach

their limits at different speeds and the variances appropriately scale the coefficients such that bond volatility
converges.
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The coefficient b1 can be given analytical form in the model, leading to the following

proposition.

Proposition 4 The coefficient in a regression of the change in an m-period bond on monetary

policy surprises is larger when the inflation target is unobserved than when it is communicated.

That is,

bLI
1,m =

cov(∆imt , it − it/t−1)LI

var(it − it/t−1)LI
>

cov(∆imt , it − it/t−1)FI

var(it − it/t−1)FI
= bFI

1,m

for all m > 1 and σ2
ε

σ2
u

∈ (0,∞). Proof in Appendix F.

The intuition for the full information scenario is straightforward. Current shocks εt, ut

and gt appear in both the nominal short rate forecast error and the change in bond yields

and generate a covariance between the two. This covariance dies out over time as the effect of

transitory shocks are scaled down in the bond calculation. Note, however, that because the

covariance captures true policy innovations as well as transitory shocks, the coefficient can

not be interpreted as the effect of pure monetary policy shocks.

With limited information and learning, we have seen that ∆imt and it−it/t−1 react not only

to current shocks but incorporate a dependence on the historical realisation of shocks through

π∗t/t (recall the polynomial lagged function in equation 24). This adds covariance terms. In

addition, overreaction of long-run inflation expectations to transitory shocks ensures that the

covariance between long interest rates and shocks to the policy reaction function does not die

out as quickly.

2. Volatility and Sensitivity of Forward Rates

Forward rates also appear to be highly sensitive to inflation news. Gürkaynak et al. (2003)

document two empirical facts about the behaviour of forward rates. First, the volatility of

forward rates is not downward sloping with horizon; 10 and 15 year forward rates are as

volatile as 2 year forward rates. Second, forward rates respond at very long horizons to

current news – following inflation news surprises, the magnitude of the long response is often

similar to that of one year rate.

Both types of behaviour are predicted by the model here and qualitatively this is due to

time-variation in the inflation target. With unpredictable movements in the target, long-run
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inflation expectations are not anchored to a fixed point. Volatility of forward rates can be

defined as the change in the forward rate at a fixed horizon from one quarter to the next in

the same manner as Gürkaynak et al. (2003). The following expressions can be derived from

the model:

iFI
t+j/t − iFI

t+j/t−1 = π∗t − π∗t−1 = εt

var(iFI
t+j/t − iFI

t+j/t−1) = σ2
ε ∀ j > 1

iLI
t+j/t − iLI

t+j/t−1 = (1− φ)(πt − πLI
t/t−1) = (1− φ)kt

var(iLI
t+j/t − iLI

t+j/t−1) = (1− φ)2σ2
k = σ2

ε ∀ j > 1

These variances are not only constant over horizon j but share the same value when the gain

is calibrated optimally to the signal-to-noise ratio. This occurs because the Kalman filter (the

minimum variance estimator of the unobserved state variable) matches the second moment

of the true and perceived targets. That is, in the univariate case (1− φ)2σ2
k = σ2

ε .

The response of forward rates to a one-standard-deviation inflation surprise is estimated

by:

it+j/t − it+j/t−1 = α + b2,j

πt − πt/t−1

stdev(πt − πt/t−1)
+ εt,j

and yields the following coefficients:

bFI
2,j =

σ2
ε√

σ2
ε + δ2σ2

û

∀ j > 1

bLI
2,j = σε ∀ j > 1

where σε >
σ2

ε√
σ2

ε + δ2σ2
û

given σ2
û > 0

(see Appendix G). Both information scenarios deliver the qualitative property that the re-

sponse of forward rates to macroeconomic news is constant over all horizons. However, the

signal-extraction problem raises bLI
2,j to exceed bFI

2,j for all j for the same reasons that the

coefficient on monetary policy innovations was higher. This is closely related to the empirical
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finding of Diebold, Rudebusch, and Aruoba (2003) that inflation surprises boost the level

factor in a latent factor model of the yield curve. This is consistent with the mechanism in

the model here in which inflation surprises contain information which prompt revision of the

perceived target and long-run inflation expectations.

4 Quantitative Implications

4.1 Calibration

Having shown for a simple case that time-variation in the inflation target and learning con-

tribute to the volatility and sensitivity of bond yields, what are the relative magnitudes

involved? To answer this I present calibrations from the full version of the model in which

bond markets use both observation equations to infer the values of unobserved state variables

and transitory shocks are serially correlated. Plausible parameter choices yield predictions

from the model of approximately the right magnitude. Such a calibration exercise is useful

to assess the relative contribution of the mechanisms in the model, particularly for the long

maturity interest rates to which the model is better suited. Variance of the inflation target

is used to match the observed volatility in bond returns at the long end of the yield curve.

The factors captured by the model are obviously not the only sources of bond volatility but

Ang and Bekaert (2004) find that those that are excluded here, namely time variation in term

premia and the real interest rate, account for very little in empirical variance decompositions.

Structural parameters for a simple DSGE model are suggested by Clarida, Gali, and

Gertler (2000): an elasticity of inflation with respect to the output gap of 0.3 in the Phillips

curve and a one-to-one relationship between the output gap and the real interest rate in the

aggregate demand equation. To match the persistence in inflation and output they assume

highly serially correlated disturbances in their simulations (ρ = µ = 0.9) which imply that a

shock has a half-life of over six quarters. This is unlikely to be appropriate here as the non-

stationary inflation target accounts for much of the persistence in inflation. I instead assume

a common persistence parameter of 0.5 implying a half-life of just over one quarter.15

15Beechey, Carlsson and Österholm (2004) use the decomposition suggested by this model to re-examine the
time series properties of transitory shocks to the economy once a random walk in the inflation target has been
filtered out. The serial correlation in the residuals is substantially lower and between 0.4 to 0.7.
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Table 1: Parameter Calibrations
Structural Parameters Variances
β (Consumption discount rate) 0.99 σ2

û 1.0
λ (Elasticity of πt − π∗t wrt yt) 0.3 σ2

ĝ 0.7
γ (Elasticity of output wrt real interest rate) 1 σ2

ε 0, 0.2, 0.35, 0.7
α (Preference in central bank’s loss function) 0.5
ρ, µ (Persistence of transitory shocks) 0.5

Notes: Variances pertain to annualised quarterly observations. That is, zt = 400 ∗ (ln Zt −
ln Zt−1).

Clarida et al. (2000) do not suggest variances for the transitory shocks in their model.

Rudebusch (2002) estimates a partially backward-looking variant of a new Keynesian model,

also assuming a constant steady state, and reports estimated variances of serially uncorrelated

aggregate supply and demand shocks. Expressed as shocks to annualised quarterly inflation

and the level of the output gap, these variances are approximately 1 and 0.7 respectively.

Whilst it is not clear that these are the correct variances for the model at hand, varying them

within plausible ranges does not materially affect the implications of the calibration exercise.

Note that by assuming ρ = µ = 0.5, the unconditional variances σ2
u and σ2

g are one third

larger than σ2
û and σ2

ĝ respectively.

There are few estimates of the variance of innovations to the inflation target. Smets and

Wouters (2003) estimate the quarterly innovation variance for a random walk inflation target

to be 0.055 (median estimate) for the U.S. between 1973 and 2003 and 0.099 for the Euro-

area. Kozicki and Tinsley (2003) find a similar estimate of 0.044 using U.S. data from 1960,

although they use a dummy variable to account for the changes in the early Volcker years.

To put these estimates in perspective, a quarterly innovation variance of 0.05 (annualised

variance of 0.8) implies a standard deviation of 1.4 percentage points in the inflation target

over one decade. Likewise, an innovation variance of 0.01 (annualised variance approximately

0.2) implies a standard deviation of 0.7 percentage points over a decade. The basic parameter

choices are summarised in Table 1.

4.2 Volatility of Bond Returns

Table 2 shows the variance of quarterly changes in constant maturity bonds in the United

States from 1981 to 2004. The volatility of bond returns declined substantially in the 1990s

26



Table 2: Volatility of returns on U.S. Treasuries, 1981Q1 to 2004Q3
Maturity (years) 1981Q1 - 2004Q3 1981Q1 - 1989Q4 1990Q1 - 2004Q3

1 0.74 1.51 0.27
2 0.72 1.35 0.34
5 0.61 1.06 0.33
10 0.46 0.82 0.24
20∗ − − −
30 0.37 0.67 0.15∗∗

Notes: Volatility is calculated as the variance of the quarter-to-quarter change in the reported
bond yield. Data are end quarter observations March, June, September, December. *Missing
data 1987 to 1994. ** Missing data March 2002 to end of sample. Source: Board of Governors
H.15 Database, selected constant maturity treasury bonds.

Table 3: Calibrated volatility of bond returns, Full Model
Constant Moderate High Low

Maturity σ2
ε = 0 σ2

ε = 0.35 σ2
ε = 0.7 σ2

ε = 0.2
(years) FI LI FI LI FI LI

1 0.61 0.95 1.25 1.31 1.68 0.81 1.05
2 0.17 0.52 0.74 0.87 1.15 0.37 0.55
5 0.03 0.38 0.48 0.73 0.86 0.23 0.31
10 0.01 0.36 0.41 0.71 0.78 0.21 0.25
20 0.00 0.35 0.38 0.71 0.74 0.20 0.22
30 0.00 0.35 0.37 0.70 0.72 0.20 0.22

Notes: The data in the table are generated with Monte Carlo simulations using 1000 draws
of the full model economy observed for 75 years. Reported numbers are the mean of the
variances over all simulations.

relative to the preceding decade across all maturities but behaves broadly as expected in both

periods with volatility declining as term increases.

Simulated volatility for the full model (bond markets learn through both short rate and

inflation forecast errors) is shown in Table 3. Four calibrations of the variance of the inflation

target (σ2
ε) are shown, labeled constant, moderate, high and low. The latter three are chosen

to roughly correspond to the volatility at the long end of the curve for the samples in Table

2.

Results for a constant inflation target are shown in column 2. Volatility declines rapidly

with maturity, leaving very little variance in even a 5 year bond. Observed bond yields exhibit

substantially more volatility at long maturities and the benchmark of a constant inflation

target appears a poor approximation. Figure 2 plots this, alongside predicted values from the

model with a time-varying target.
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In the subsequent columns of Table 2, volatility in the full information (FI) and limited

information (LI) scenarios are reported for the three calibrations of σ2
ε (moderate, high and

low). There are several points worth making here. First, the contribution of a time-varying

inflation target to bond volatility is substantial. For all calibrations, it is movement in the

target that is responsible for bond volatility once transitory shocks have died out. Second,

learning contributes additional volatility compared to the full information counterfactual,

between 8 and 13 basis points for a 5-year bond and 4 and 7 basis points for a 10-year bond.

For the high scenario, this represents about one tenth of total volatility in the ten year bond;

for the low scenario one fifth. Third, the wedge created by learning diminishes with maturity.

This occurs because as maturity grows, revision of long-run inflation expectations comes to

dominate movement in the bond and the optimal learning strategy calibrates the variance of

revisions to the variance of changes in the true target.

Figures 2, 3 and 4 plot the values in Table 3 against actual volatility for the three sample

periods. In Figure 3 it can be seen that the expectations hypothesis paired with a time-varying

inflation target does a good job of matching the volatility of the term structure in the 1980s.

For the latter half of the sample the model does a relatively poor job of mimicking the short

end of the yield curve, as short term interest rates predicted by the model are more variable

than in the data. In part this reflects that the optimal monetary policy reaction function

in the model does not incorporate an interest rate smoothing term at a time when policy

movements have become smoother.16 The model does a better job for longer maturities and

it is clear that some degree of time variation is needed to match the volatility in long bond

returns.

These calibrations have assumed that variation in the inflation target accounts for most

of the movement in bond yields over time. If variation in the term premium does account for

some of the movement, this does not lower the estimated contribution made by learning. For

lower values of σ2
ε and a weaker signal-to-noise ratio, the relative contribution of learning to

volatility rises. This can be seen more clearly in Figures 5 which plots the ratio of the variance

of a 10-year bond between the limited and full information scenarios for a richer range of σ2
ε

16Introducing an ad hoc smoothing term in the monetary policy reaction function lowers the immediate
response of the policy-controlled short rate to current shocks and thus lowers the variance in 1 and 2 year bond
changes with little effect on longer maturities.
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Figure 2: Volatility of returns, 1981Q1 to 2004Q3
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Notes: LI limited information, FI full information. Sample data from Board
of Governors H.15 Database, constant maturity treasuries (missing data for
20 year bond). Calibrated values from Table 3, columns 2, 3 and 4.

calibrations. The ratio of variances is greatest when the signal-to-noise ratio is weakest.

The results at the long end of the term structure are not particularly sensitive to alternative

parameter calibrations. Lowering the central bank’s preference for output stability (α) to 0.2

raises the volatility of short interest rates (1 and 2 years) because of the central bank’s greater

willingness to create output deviations to restore inflation to the target but not long rates.

Lowering the persistence of the transitory shocks to ρ = µ = 0.3 lowers volatility at all

maturities, although again, the effect is most pronounced at the short end when transitory

shocks feature more heavily in interest rate forecasts. For the 10-year bond, the difference is

only a matter of 2 basis points. When the common serial correlation parameter is raised to

0.8, persistence raises the variance of a 10-year bond to 0.11 even with a constant inflation

target. However, this degree of autocorrelation seems implausibly high, causing the variance

of 1 and 2 year bonds to reach 3.8 and 1.9 respectively, grossly inconsistent with the data

in Table 2. Lastly, lowering the elasticity of output with respect to the real interest rate (γ)

from 1 to 0.5, so that the central bank needs to move interest rates by more to achieve the

same effect on inflation, has the effect of significantly raising volatility at the short end (1 and
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Figure 3: Volatility of returns, 1981Q1 to 1989Q4
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Notes: Sample data from Board of Governors H.15 Database, constant matu-
rity treasuries (missing data for 20 year bond). Calibrated values from Table
3, columns 5 and 6 for σ2

ε = 0.7.

Figure 4: Volatility of returns, 1990Q1 to 2004Q3
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rity treasuries (missing data for 20 year bond). Calibrated values from Table
3, columns 7 and 8 for σ2
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Figure 5: Ratio of volatility in 10-year bond returns
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Notes: The graph shows the ratio of volatility of quarter-to-quarter changes
in a 10-year bond between the limited and full information cases for the range
σ2

ε ∈ [0.05, 0.80]. Generated using Monte Carlo simulations as in Table 3.

2 year bonds) without imparting much additional variance at or beyond the 10-year bond.

In Section 3 it was noted that the policy short rate is a noisier signal of the inflation target

in this model. Calibrating the model for the case in which bond markets purely learn through

inflation surprises lowers volatility slightly for the limited information scenario (see Table 4).

The differences, however, are minor and only a mater of 1 to 2 basis points at the long end.

4.3 Two Sensitivity puzzles

We now return to the model’s quantitative predictions about the sensitivity puzzles discussed

in Section 3.

1. Sensitivity of bond yields to monetary policy innovations

Table 5 reproduces the response of long interest rates to monetary policy surprises esti-

mated by other authors. Ellingsen and Söderström (2004) and Craine and Martin (2004) note

that the size of the coefficients reflects a combination of exogenous and endogenous monetary

policy shocks, that is, target changes and transitory shocks that enter the monetary policy

reaction function respectively. For this reason they should not be viewed as measuring the
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Table 4: Calibrated volatility of bond returns (π observation equation only)
Maturity σ2

ε = 0 σ2
ε = 0.35 σ2

ε = 0.7 σ2
ε = 0.2

(years) FI LI FI LI FI LI

1 0.61 0.95 1.19 1.31 1.58 0.81 1.00
2 0.17 0.52 0.70 0.87 1.08 0.37 0.51
5 0.03 0.38 0.46 0.73 0.83 0.23 0.30
10 0.01 0.36 0.40 0.71 0.76 0.21 0.24
20 0.00 0.35 0.37 0.71 0.73 0.20 0.22
30 0.00 0.35 0.37 0.70 0.72 0.20 0.21

Notes: The data in the table are generated with Monte Carlo simulations using 1000 draws
of the full model economy observed for 75 years. Reported numbers are the mean of the
variances over all simulations.

Table 5: Response of interest rates to Fed Funds rate surprises
Maturity Kuttner Ellingsen & Söderström
(years) Coefficient standard error Coefficient standard error
1 0.72 (0.08) 0.83 (0.09)
2 0.61 (0.06) 0.68 (0.10)
5 0.48 (0.04) 0.50 (0.11)
10 0.32 (0.03) 0.29 (0.11)
20 – – – –
30 0.19 (0.02) 0.17 (0.09)

Notes: Coefficient estimates with standard errors in parentheses reproduced from Kuttner
(2001) and Ellingsen and Söderström (2004).

pure effect of monetary policy. The endogenous component can reflect shocks that are com-

monly observed by the central bank and bond markets or asymmetrically-held information

that is revealed through inflation or monetary policy.

Calibrated values of the coefficient b1,n are shown in Table 6 for a constant inflation target

and the moderate and low values of target innovation variance likely to describe the period

after 1989 (all other parameters are the same as those outlined in Table 1). The simulated

coefficients are of a similar magnitude to those estimated by Kuttner (2001) and Ellingsen

and Söderström (2004), especially for longer maturities, although at times both bLI
1,m and bFI

1,m

fall within one standard deviation of the estimates.

The coefficients in Table 6 decline with maturity as the averaging inherent in the ex-

pectations hypothesis reduces the covariance between long and short rates. For a constant

inflation target (Table 6 column 2), long maturity bonds are anchored to a fixed point and

shocks to the monetary policy reaction function have little effect at long horizons. Thus the
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Table 6: Calibrated response of interest rates to Fed Funds rate surprises
Maturity σ2

ε = 0 σ2
ε = 0.35 σ2

ε = 0.2
(years) b̂FI

2,m = b̂LI
2,m b̂FI

2,m b̂LI
2,m b̂FI

2,m b̂LI
2,m

1 0.47 0.55 0.65 0.52 0.62
2 0.25 0.36 0.51 0.32 0.45
5 0.10 0.23 0.41 0.18 0.34
10 0.05 0.19 0.38 0.13 0.31
20 0.03 0.17 0.36 0.11 0.29
30 0.02 0.16 0.36 0.10 0.28

Notes: Calibrated values generated with Monte Carlo simulations as in Tables 3 and 4.

coefficients quickly decline to zero. Comparing to columns 3 and 5, the counterfactual case of

a communicated, time-varying inflation target raises the estimates substantially. This occurs

because long-run inflation expectations are revised in accordance with observed changes in

the inflation target.

The effect of limited information can be seen by comparing to columns 4 and 6. Figure

6 also plots the data in the table for for σ2
ε = 0, 0.2. Constant-gain learning substantially

increases the coefficients that should be expected from a regression of long interest rates on

monetary policy surprises. This is especially so for longer interest rates whose movements are

dominated by revisions in inflation expectations. Because such revisions respond to current

transitory shocks that also enter the policy reaction function, the covariance between surprise

short rate movements and long interest rates remains large with maturity.

When bond markets are confined to learning purely through the inflation observation

equation, the predicted regression coefficients are 3 to 5 basis points lower depending on

maturity but still double those of the full information counterfactual.

2. The Volatility and Sensitivity of Forward Rates

Gürkaynak et al. (2003) report that the volatility of forward rates (standard deviation of

quarterly changes) between 1990 to 2002 is 1.3 percent at the 1 year to horizon and declines

smoothly to 1 percent point at 15 years. For the calibrations considered in this paper, the

moderate innovation variance corresponds to a standard deviation, σε, of 0.59 and the low

to 0.44 which is around half of the reported volatility. Introducing serially correlated errors

imparts slightly more volatility to near-horizon forward rates, consistent with their empirical
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Figure 6: Response of interest rates to monetary policy surprises
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Notes: Generated using 1000 monte carlo simulations of the full economy
observed for 75 years for σ2

ε = 0.2. Values plotted are the mean of coefficients
over all simulations from Table 6, columns 2, 5 and 6.

findings.17 The predictions of the model contrast strongly with those of a partly backward-

looking model with constant steady state such as Rudebusch (2002). While such models

generate substantial persistence in inflation, the purely transitory nature of the shocks results

in a strongly downward sloping volatility profile.

Turning to the calibrated regression coefficients, Figure 7 plots the coefficients bFI
2,j and

bLI
2,j for the low calibration σ2

ε = 0.2 and for a constant inflation target. The coefficients

represent the average movement of forward rates associated with a one standard deviation

inflation surprise. With a constant target, the inflation surprise consists only of transitory

shocks which are not factored into long-run inflation expectations. Thus the coefficient quickly

reaches zero. With a random-walk inflation target and full information, the coefficient does

not decay to zero because of the covariance between changes in the target and revision of

inflation expectations.
17This can be seen most easily for the full information case:

var(iFI
t+j/t − iFI

t+j/t−1) = σ2
ε +

�
ρ +

λ

αϕ
(1− ρ)

�2
δ2ρ2jσ2

û + µ2j σ2
ĝ

ϕ2
for all j > 1 (33)
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Figure 7: Response of forward rates to inflation surprises
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Notes: Generated using 1000 monte carlo simulations of the full economy
observed for 75 years for σ2

ε = 0.2. Values plotted are the mean of coefficients
over all simulations.

With constant-gain learning and a weak signal-to-noise ratio (low σ2
ε), the reaction 20

quarters ahead (0.43) is three times as great as the reaction with full information (0.13). This

occurs because long-run inflation expectations co-vary with permanent as well as transitory

shocks, substantially increasing the predicted coefficient from such a regression. As σ2
ε rises,

the ratio of bLI
2,j to bFI

2,j declines but does not fall below two for the calibrations considered

here. What this analysis makes clear is that it is time-variation and persistence in the inflation

target that replicates the qualitative finding that forward rates respond to inflation surprises

at long horizons. Asymmetric information and inference substantially increase the magnitude.

4.4 Extensions

1. Learning with the Wrong Gain

In the analysis above, the rate at which bond market participants learn about the inflation

target is assumed to be calibrated to the true signal-to-noise ratio in the economy. However,

agents may be learning at the wrong rate for a number of reasons including insufficient infor-

mation about the true gain, an attempt to learn more quickly the character of a new policy
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regime following a change, or a lack of credibility in an announced inflation target. Small

deviations from the optimal gain can have sizeable implications for volatility. With faster

learning, agents adjust to permanent structural shocks more rapidly but also incorporate more

transitory shocks into their estimate of the state variables. For example, building upon the

structurally stable model posited by Orphanides and Williams (2003), Beechey (2004) shows

that a small and positive gain imparts sufficient volatility to long interest rates to reject the

null hypothesis in a Shiller style test of excess volatility.

2. Inflation Targeting

Proponents of inflation targeting sometimes claim greater financial market stability as one

of the potential benefits of such a policy. The mechanism described in this paper suggests

that this benefit should arise through two channels - by stabilising the nominal target and

by communicating its value. One implication is that conditional on the mean and variance of

macroeconomic shocks, long term interest rates should exhibit less volatility under inflation

targeting regimes.

Bond volatility should offer a test of the success of such targets in anchoring long-run

expectations. This is easier said than done, since it is import to control for differences in

the magnitude of macroeconomic shocks and idiosyncratic differences in term premium varia-

tion could confound the exercise. In addition, some inflation-targeting central banks operate

with loosely defined targets that may not differ functionally from the implicit inflation tar-

geting practised in the US – Australia, for example, has a target band with loosely defined

medium-term horizon. Furthermore, some targeting regimes may not yet have earned suffi-

cient credibility to affect bond market outcomes.

Another implication of the model is that when central banks successfully communicate

inflation goals, forward rates should become less sensitive to inflation news. This is borne out

in the empirical work of Gürkaynak, Sack, and Swanson (2003) for the United Kingdom where

the Bank of England has had some success stabilising inflation expectations. Gauging how

much of this is due to communication about the target versus how much is due to stabilising

the target itself could be addressed with a framework like the one proposed in this paper.
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5 Conclusions

The volatility and sensitivity of long interest rates are closely related. As previous authors

have noted, non-stationary nominal short rates are more likely to reconcile observed bond

volatility with the expectations hypothesis of the term structure than mean-reverting short

rates. This paper has built non-stationarity into a standard forward-looking model via the

inflation target then introduced an asymmetric information problem in which bond markets

learn adaptively about time-varying policy preferences.

Asymmetric information and learning are key to understanding the sensitivity of long

interest rates. Revelation of asymmetric information via noisy signals results in long-run

inflation expectations being adjusted in response to both permanent and transitory shocks.

This generates substantial co-movement between long interest rates and current transitory

shocks and offers an explanation for the sensitivity of bonds as long as 30 years to current

monetary policy and the reaction of forward rates at very long horizons to inflation news.

The asymmetric information problem also imparts additional volatility to bond returns.

The source of this is the tendency of the perceived inflation target to overreact to transitory

shocks in the economy and confound them with permanent shocks to the inflation target. Time

variation in the inflation target is the main source of volatility in the model but learning adds

to the ability of the model to match the observed volatility of returns. Calibration of the

model suggests that for 5- and 10-year bonds respectively, a quarter to a fifth of volatility can

be attributed to the inference problem. Notably, this channel is potent even when the degree

of time variation in policy goals is small.

Worthwhile extensions of the analysis in this paper include enriching the model to include

backward-looking elements and studying the implications of feedback of interest rate volatility

into aggregate demand. The information assumptions have meant that strategic aspects of

expectations formation have not been considered but these could be important in related

frameworks.

The framework proposed in this paper can be used to address such questions as the

source of the compression in bond volatility observed in much of the OECD during the mid-

1990s, and the decline in the amplitude of forecast errors of the nominal short rate (Swanson,
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2004). Whilst some have answered that the amplitude of shocks arriving in the economy has

compressed, others have pointed to a shift toward explicit or implicit inflation targeting in

certain countries and to improvements in central bank transparency and communication. All

three channels are at work in the model presented here and the view that reducing the degree

of time-variation in policy preferences is a factor finds support. The results also imply that

a central bank operating a relatively stable yet uncommunicated target can ameliorate the

inference problem and further reduce financial market volatility by regularly announcing its

policy goals.
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Appendix A - Microeconomic foundations

Aggregate Demand: An infinitely-lived, representative household chooses Ct (consump-
tion), Nt (household size) and Bt (assets) to maximise lifetime utility:

max
Ct,Nt,Bt

E0

∞∑

t=0

βt

[
C1−σ

t

1− σ
− N1+ϕ

t

1 + ϕ

]

s.t. PtCt + (1 + it)−1Bt = Bt−1 + WtNt for all t

where Ct and Pt are constant elasticity of substitution combinations of goods over mea-
sure 1. The first order conditions of the standard Lagrangian for this problem yield the
consumption Euler equation:

1 = Et

{
β(1 + it)

[
Ct+1

Ct

]−σ Pt

Pt+1

}
.

Log-linearising the Euler equation around the steady state yields

ct = Etct+1 − 1
σ

[it − Etπt+1]

where lower case letters denote log deviations. Paired with the market clearing condition
ct = yt and rewritten in terms of the output gap, xt = yt − yP

t (the deviation of output
from the flexible price ”potential” level yP

t ) this yields the aggregate demand equation in the
text. (This can also encompass exogenously evolving government spending.) The steady state
implies a constant real interest rate around which the Euler equation is linearised.

Aggregate Supply: Following Adolfson, Laséen, Lindé, and Villani (2004), the market
for final goods is perfectly competitive and the production function of the final good firm
transforms intermediate inputs into final output according to

Yt =
[∫ 1

0
Y

1
λt

i.t

]λt

, 1 ≤ λ < ∞.
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Profit maximisation leads to a relationship between the average price level of final goods, Pt,
and the prices of intermediate goods, Pi,t:

Pt =
[∫ 1

0
P

1
1−λt

i.t

]1−λt

. (34)

A continuum of intermediate firms, each producing a differentiated good, faces monopo-
listic competition. As in Calvo (1983), the probability that a firm can re-optimise its price
in a given period is constant and equal to (1 − ξp). For a given firm i, its re-optimised
price is Pnew

i,t . If a firm does not re-optimise then its price at t + 1 is indexed according to
Pi,t+1 = π

γp

t (π∗t )
1−γp Pnew

i,t where γp ∈ [0, 1]. Thus the price the firm can charge if it has not

re-optimised in j periods is (πtπt+1 . . . πt+j−1)
γp

(
π∗t+1π

∗
t+2 . . . π∗t+j

)1−γp

Pnew
i,t .

The representative firm faces the following optimisation problem when setting its price,

max
P new

i,t

Et

∞∑

j=0

(βξ)j υt+j




(
(πtπt+1 . . . πt+j−1)

γp

(
π∗t+1π

∗
t+2 . . . π∗t+j

)1−γp

Pnew
i,t

)
Yi,t+j

−MCi,t+jYi,t+j −MCi,t+jzt+jφ




where βυt+j is the stochastic discount factor between periods t and t + j used to discount
profits, Yi,t+j is the output of the ith intermediate firm, MCi,t+j its real marginal cost and
zt+j a permanent technology shock in the intermediate goods production function.

Smets and Wouters (2003) and Adolfson, Laséen, Lindé, and Villani (2004) show that the
first order condition of the optimisation problem combined with the average price level in (34)
yields a log-linearised Phillips curve showing the relationship between inflation, real marginal
cost. A special case is when the inflation target follows a random walk:

πt − π∗t =
β

1 + γpβ
(Etπt+1 − π∗t ) +

γp

1 + γpβ
(πt−1 − π∗t ) +

(1− ξp)
ξp

(1− βξp)
1 + γpβ

(mct + λt)

where πt and mct are log deviations from their respective steady state values. In this form,
the deviation of inflation from the target depends on past and expected future inflation as well
as marginal cost. Assuming that mct = β1xt + ut where ut can be interpreted as a cost-push
shock or as a markup shock as in Gali (2003) and that γp = 0 (i.e., non-optimised prices are
fully indexed to the current inflation target), the equation simplifies to the forward-looking
aggregate supply curve shown in the text.

Appendix B - Optimal Policy under Discretion

Given the model in (1a), (1b) and (4), the central bank minimises its loss function each period.
That is, they maximise

{
1
2αx2

t + (πt − π∗t )2
}

with respect to xt which yields the first order
condition:

xt = −λ

α
(πt − π∗t ).
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To solve for xt and πt in terms of shocks arriving in the model, substitute this first order
condition into the Phillips curve and solve for the inflation deviation at time t:

πt − π∗t = βEt[πt+1 − π∗t+1]−
λ2

α
[πt − π∗t ] + +ut

=
αβ

α + λ2
Et[πt+1 − π∗t+1] +

α

α + λ2
ut.

Assuming that private sector (price setters’) expectations are rationally forward looking, that
is Et[πt+1 − π∗t+1] = Et

(
αβ

α+λ2 Et+1[πt+2 − π∗t+2] + α
α+λ2 ut+1

)
, repeatedly substitute and take

expectations at t:

(
α + λ2

)
[πt − π∗t ] = αβEt

[
αβ

α + λ2
Et+1[πt+2 − π∗t+2] +

α

α + λ2
ut+1

]
+ αut

...

= αEt



∞∑

j=0

(
αβ

α + λ2

)j

ut+j




= α

∞∑

j=0

(
αβ

α + λ2

)j

ρjut

Taking an infinite geometric sum yields

πt − π∗t =
α

λ2 + α(1− βρ)
ut.

and
xt = −λ

α
[πt − π∗t ] =

( −λ

λ2 + α(1− βρ)

)
ut.

To find the optimal interest rate rule, employ the serial correlation in ut to write Et[πt+1 −
π∗t+1] = ρ[πt − π∗t ] and substitute into the policy trade-off:

xt = −λ

α
[πt − π∗t ] = − λ

αρ
Et[πt+1 − π∗t+1].

Replacing xt in the LHS of the aggregate demand equation and substituting for Et (xt+1) in
the RHS, solve for the optimal setting of the policy controlled nominal short interest rate:

− λ

αρ
Et[πt+1 − π∗t+1] = −γ (it −Et (πt+1)) + Et (xt+1) + gt

it =
[
1 +

λ(1− ρ)
αγρ

]
Et

[
πt+1 − π∗t+1

]
+ E

(
π∗t+1

)
+

gt

γ
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Appendix C - Steady State Kalman Filter

The following derivation of the univariate steady state Kalman gain follows the outline of
Sargent’s (1979) treatment of Muth’s permanent income problem. From Section 3.2 we have

Observation equation πt = π∗t + δût

State equation π∗t = π∗t−1 + εt

Add δût to both sides of the state equation (20) and rewrite the change in inflation as follows,

πt − πt−1 = δ(ut − ut−1) + εt.

The auto-covariance structure of this error term

cov [δ(ut − ut−1) + εt, δ(ut−j − ut−j−1) + εt−j ] =





2δ2σ2
u + σ2

ε for j = 0
−δ2σ2

u for j = 1
0 for j > 2





.

can be replicated by the covariance properties of the following MA process (Wold’s theorem)

δ(ut − ut−1) + εt = kt − φkt−1 (35)

where kt is a stationary, serially uncorrelated random process with mean zero and variance
σ2

k and auto-covariance properties

cov [kt − φkt−1, kt−j − φkt−j−1] =





(1 + φ2)σ2
k for j = 0

−φσ2
k for j = 1

0 for j > 2





.

Matching coefficients there are two relationships:

2δ2σ2
u + σ2

ε = (1 + φ2)σ2
k and (36)

−δ2σ2
u = −φ2σ2

k (37)

which can be solved for σ2
k

(
σ2

ε
δ2σ2

u

)
and φ

(
σ2

ε
δ2σ2

u

)
. Specifically,

φ = 1 +
1
2

(
σ2

ε

δ2σ2
u

)
−

√
σ2

ε

δ2σ2
u

(
1 +

1
4

(
σ2

ε

δ2σ2
u

))
.

As σ2
ε

δ2σ2
u
→∞, φ → 0 and σ2

ε
δ2σ2

u
→ 0, φ → 1.

It will be useful to write the optimal projection as a geometrically declining lagged poly-
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nomial of previously observed inflation outcomes. From above,

(1− L)πt = (1− φL)kt

⇒ (1− L)
(1− φL)

πt = πt − (1− φ)
(1− φL)

πt−1 = kt.

Because kt is orthogonal to the information set Ωt−1 the optimal projections are

πt/t−1 = π∗t/t−1 = π∗t−1/t−1 =
(1− φ)
1− φL

πt−1.

Manipulation of the above results yields

πt − π∗t/t = φkt and

π∗t/t − π∗t−1/t−1 = (1− φ)
[
πt − (1− φ)

1− φL
πt−1

]
= (1− φ)kt

where kt = (πt − πt/t−1) is the one-period-ahead inflation forecast error.

Appendix D - Variance of Forecast Errors

First note that the expression for the forecast error in (26) can be rewritten as

it+1 − iLI
t+1/t = εt+1 − δût +

(
πt − π∗t/t

)
+

λ

αγ
δût+1 +

1
γ

ĝt+1 (38)

From Appendix C we have πt − π∗t/t = φkt so replacing this and recalling kt − φkt−1 =
εt + δ (ut − ut−1) we can recursively substitute for lags of kt−j and group terms until the
forecast error is expressed in terms of historical errors:

it+1 − iLI
t+1/t = εt+1 − δût + φkt +

λ

αγ
δût+1 +

1
γ

ĝt+1

= εt+1 − δût + φ(εt + δ (ût − ût−1) + φkt−1) +
λ

αγ
δût+1 +

1
γ

ĝt+1

...

=
∞∑

m=0

φmεt+1−m +
λ

αγ
δût+1 − (1− φ)

∞∑

m=0

φmût−m +
1
γ

ĝt+1.

For φ < 1 these summations are finite and the variance can be computed recalling the inde-
pendence of shocks:

var(it+1 − iLI
t+1/t) = σ2

ε(1 + φ2 + φ4 + . . .) + δ2σ2
û

λ

αϕ

2

+ δ2σ2
û(1− φ)2(1 + φ2 + φ4 + . . .) +

σ2
ĝ

ϕ

= σ2
ε(

1
1− φ2

) + δ2σ2
û

[
λ

αγ

2

+
(1− φ)2

1− φ2

]
+

σ2
ĝ

γ2
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Proof of Proposition 1

For any φ ∈ (0, 1)

1
1− φ2

> 1

(1− φ)2

1− φ2
> 0.

Thus for any given σ2
ε , σ2

û and σ2
ĝ and calibrated gain

σ2
ε(

1
1− φ2

) + δ2σ2
û

[
λ

αϕ

2

+
(1− φ)2

1− φ2

]
+

σ2
ĝ

ϕ2
> σ2

ε +
λ

αγ

2

δ2σ2
û +

σ2
ĝ

γ2
. (39)

Appendix E - Bond Volatility

Full information: With serially correlated errors, the sum of the current and forecasted
short rates is

im
FI

t = π∗t +
1
m




[
ρ +

λ

αγ
(1− ρ)

]
δut

m−1∑

j=0

ρj +
gt

γ

m−1∑

j=0

µj


 + ζm. (40)

The one-period change in the bond is

im
FI

t −im
FI

t−1 = εt+
1
m




[
ρ +

λ

αγ
(1− ρ)

]
δ

m−1∑

j=0

ρj(ut − ut−1) +
1
γ

m−1∑

j=0

µj (gt − gt−1)


+ζm

t −ζm
t−1.

(41)
and its variance

var(im
FI

t − im
FI

t−1 ) = σ2
ε +

1
m2




[[
ρ + λ

αγ (1− ρ)
]
δ
∑m−1

j=0 ρj
]2

2(1− ρ)σ2
u

+
[

1
γ

∑m−1
j=0 µj

]2
2σ2

g(1− µ)


 + σ2

ς

where σ2
u = σ2

û
1−ρ2 and σ2

g =
σ2

ĝ

1−µ2 are the unconditional variances of the serially correlated
disturbances, ut and gt. This variance is increasing in p, both through the first and second
terms in parentheses, as well as due to the fact that ∂δ

∂ρ > 0. When ρ = µ = 0, this expression
returns the variance shown in the text for the simple case.

Limited Information: Borrowing the result from Appendix C that π∗t/t − π∗t−1/t−1 =
(1 − φ)kt, it is possible to substitute recursively for kt−j , j = 0, ..∞ using kt = εt + δ(ut −

46



ut−1) + φkt−1:

im
LI

t − im
LI

t−1 =
1
m

(
εt + (m− 1)(1− φ)kt +

λ

αγ
δ(ût − ût−1) +

1
γ

(ĝt − ĝt−1)
)

...

=
1
m




εt [1 + (m− 1)(1− φ)] + (m−1)(1−φ)
1−φL φεt−1 + 1

γ (gt − gt−1)

+
[

λ
αγ + (m− 1)(1− φ)

]
δut −

[
λ

αγ + (m− 1)(1− φ)2
]
δut−1

−
[

(m−1)(1−φ)2φ
1−φL

]
δut−2




var(im
LI

t −im
LI

t−1 ) =
1

m2




[
[1 + (m− 1)(1− φ)]2 + ((m−1)(1−φ)φ)2

1−φ2

]
σ2

ε

+
[(

λ
αγ + (m− 1)(1− φ)

)2
+

(
λ

αγ + (m− 1)(1− φ)2
)2

]
δ2σ2

u

+
(

((m−1)(1−φ)2φ)2

1−φ2

)
δ2σ2

u + + 1
γ2 2σ2

g




+σ2
ς .

Substituting the non-linear function for φ
(

σ2
ε

δ2σ2
u

)
it is possible to show that var(im

LI

t −im
LI

t−1 ) >

var(im
FI

t − im
FI

t−1 ).

Appendix F - Interest Rate Regression Coefficients

For Proposition 5 to be true requires that

cov(∆imt , it − it/t−1)LI

cov(∆imt , it − it/t−1)FI
>

var(it − it/t−1)LI

var(it − it/t−1)FI

Forecast error variances are shown in Appendix D. The covariances are as follows:

cov(∆imt , it − it/t−1)
FI = σ2

ε + δ2σ2
û

[
1
m

(
λ

αγ

)2
]

+
1
m

σ2
ĝ

γ2

cov(∆imt , it − it/t−1)
LI = σ2

ε

[
1 +

m− 1
m

φ(1− φ)
1− φ2

]
+

δ2σ2
û

[
1
m

(
λ

αγ

)2

+
λ

αγ
(1− φ) +

m− 1
m

(1− φ)3

1− φ2

]
+

σ2
ĝ

γ2

As σ2
ε

σ2
u

→ 0,
var(it+1−iLI

t+1/t
)

var(it+1−iFI
t+1/t

)
→ 1 from above and

cov(∆imt+1−it+1/t)
LI

cov(∆imt+1,it+1−it+1/t)
FI → m from below. As the

signal-to-noise ratio rises, the covariance ratio declines monotonically toward 1. The variance

ratio rises to a maximum value at φ′ but then also declines to 1 (i.e., σ2
ε

σ2
u

→∞,
var(it+1−iLI

t+1/t
)

var(it+1−iFI
t+1/t

)

and
cov(∆imt+1−it+1/t)

LI

cov(∆imt+1,it+1−it+1/t)
FI → 1). Over the range σ2

ε

σ2
u

∈ (0,∞),
cov(∆imt+1−it+1/t)

LI

cov(∆imt+1,it+1−it+1/t)
FI >

var(it+1−iLI
t+1/t

)

var(it+1−iFI
t+1/t

)
for m > 1.
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Appendix G - Forward rate regression coefficients

The coefficients of the following regression

it+j/t − it+j/t−1 = α + b2,j

πt − πt/t−1

stdev(πt − πt/t−1)
+ ε.

can be calculated as:

bFI
2,j =

cov(iFI
t+j/t − iFI

t+j/t−1, πt − πFI
t/t−1)

var(πt − πFI
t/t−1)

√
var(πt − πFI

t/t−1) =
σ2

ε√
σ2

ε + δ2σ2
û

∀ j > 1

bLI
2,j =

cov(iLI
t+j/t − iLI

t+j/t−1, πt − πLI
t/t−1)

var(πt − πLI
t/t−1)

√
var(πt − πLI

t/t−1) = (1− φ)σk ∀ j > 1.

The Kalman filter matches the change in the perceived target to the second moment of the
actual target, i.e., σ2

ε = (1−φ)2σ2
k (see matched covariances in Appendix C). Thus bLI

2 = σε.
For any σ2

û > 0, σε > σ2
ε√

σ2
ε+δ2σ2

û

and bLI
2,j > bFI

2,j .
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